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Introduction: 

Organocatalysis refers to a form of catalysis, whereby the rate of a chemical reaction is 

increased by an organic catalyst referred to as an "organocatalyst" consisting of carbon, 

hydrogen, sulfur and other nonmetal elements found in organic compounds. Over the last decade, 

catalysis of reactions by simple metal-free organic molecules (organocatalysis) has become an 

important area of research. Although organocatalysis frequently require a high catalyst loading 

and long reaction times, compare with catalysts made of metal complexes, organocatalysts show 

many extraordinary advantages including their lack of sensitivity to moisture and oxygen, their 

ease of preparation, low toxicity and less expensive.
1
 All of these advantages are attractive 

towards the synthesis of pharmaceutical intermediates. Basically, organocatalysts can be divided 

into four types based on their modes of activation: Lewis bases, Lewis acids, Bronsted bases, and 

Bronsted acids. Since the rediscovery of organocatalysis at the dawn of the new millennium an 

exponential number of papers on this subject appeared over the years.
2
 It generated several 

excellent reviews and books where various aspects of this field have been dissected.
3,4

 Pavel 

Kocovsky pointed out that while the words ‗‗asymmetric‘‘ and ‗‗organocatalysis‘‘ were closely 

connected in the minds of the many scientists working in this field, chiral compounds are not the 

only important ones which can be easily prepared employing this methodology.
5
 The well-

known attractive aspects of organocatalysis such as environmentally friendly conditions (no need 

for anhydrous conditions or of transition metals)
3
 without any doubt apply also to 

transformations affording achiral molecules as products.  

This field is still in its early years, researchers are now starting to ‗‗think 

organocatalytic‘‘ when applying disconnecting strategies to total syntheses. Some non-

asymmetric organocatalytic reactions are so surprising that they could not have been foreseen at 

the beginning of their relevant project. In several cases the achiral products are the undesired side 
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products in an asymmetric transformation. As it has happened several times before, coincidence 

brought a significant advance in science
.6 

 

Types of organocatalysts: 

Broadly speaking the organocatalysts can be classified into four main categories, 

(Figure-1.1) they are  

1. Lewis Base catalyst, 

2. Lewis Acid catalyst, 

3. Bronsted Base catalyst and  

4. Bronsted Acid catalyst 

 

Figure 1.1: Types of organocatalysts 

 

Lewis Basic Organocatalysts and Organocatalysis:  

Various bases have been reported in the literature as an efficient organocatalysts. These 

include the iminium ion, phosphine, cyclic amino acids such as proline etc. The important 

examples of Lewis base organocatalysis have been discussed below.  

a) Diels-Alder Reaction: 

Group of MacMillan reported first enantioselective organocatalytic Mukaiyama-Michael 

reaction leading to the direct access to enantioenriched -butenolide architecture via the 1,4 
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addition of substituted furan to α,β-unsaturated enals catalysed by imidazolidinone catalyst
7
 

(iminium ion), scheme-1.1. In Diels-Alder reactions, α,β-unsaturated carbonyl compounds as 

diene and 1,4-cyclopentadiene as dienophiles had also been reported by analogous catalyst
8
 but 

with 5-methylfuryl substituent instead of t-butyl group, (scheme-1.2) 
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Scheme-1.2 

 

b) Friedel-Craft Alkylation of Pyrrole 

To further demonstrate the potential of iminium-catalysis strategy, the group of 

MacMillan reported an asymmetric Friedel-Craft alkylation of pyrrole and indole, a variant that 

is currently unavailable using acid or metal catalysis. The reaction is common as it has wide 

scope with substituents on both, aldehydes as well as pyrrole
9
 such as alkyl, alkoxy, benzyloxy 

and ester were well tolerated along with good to excellent yields and enantioselectivity, 

(scheme-1.3)  
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c) Aldol Reaction (Ketone-Aldehyde aldol) 

Aldol condensation constitutes one of the key organic reactions leading to highly 

versatile β-hydroxy aldehyde or ketone building blocks. One of the versatile utilities of 

organocatalysis is the aldol condensation reaction. List et. al.
10

 reported the L-proline catalysed 

asymmetric aldol condensation of enolisable ketone and aldehydes, (scheme–1.4). In addition 

the organocatalysis has been successfully achieved for Mannich reaction
11

 using similar types of 

catalyst, (scheme – 1.5). 
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Scheme-1.5 

 

Lewis Acidic Organocatalysts and Organocatalysis:  

An additional useful category of organocatalysis is Lewis acid organocatalysis, several 

efficient Lewis acid types of organocatalysts have been emerged recently. These include the 

phosphorous, nitrogen and boron based catalysts. 

Some selected examples of Lewis acid organocatalysis are discussed below 

a) Michael addition 

Maruoka et al.
12

 reported the Chiral ammonium bifluorides as extremely efficient 

organocatalyst for highly enantioselective Michael addition of silyl nitronates to α, β-unsaturated 

aldehydes. This protocol provided the access to optically active γ-nitro aldehydes and their enol 

silyl ethers in high to excellent yields, (scheme-1.6). 
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Scheme-1.6 

b) Epoxidation 

Lewis acidic catalyst such as cyclic amino ester α-fluoro-N-carbethoxytropinone
13

 has 

been reported for the epoxidation of alkenes. The reaction proceeded efficiently and to afford 

wide variety of oxiranes in good to excellent yields and reasonably high enantiomeric excess, 

(scheme-1.7). 
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Scheme-1.7 

 

c) Insitu Enamine: Michael Addition (Addition to nitroalkenes) 

The direct Michael addition of α-hydroxyketones to β-arylnitroolefins catalysed by N-

iPr-2,2‘-bipyrrolidine is reported by the Alexakis group
14

, (scheme-1.8). In this tertiary nitrogen 

of the catalyst leads to the formation of enamine intermediate that tells the diasteroselectivity and 

very high ee‘s. 
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d) Insitu Enamine: Oxidations (α- Amination) 

 The β-amino alcohols are considered to be highly versatile building blocks in organic 

synthesis.  The organocatalysed stereoselective process for β-amino alcohol have been recently 

developed by group of List
15

 in which the addition of enolisable aldehyde to Cbz protected 

carbodiimide using S-proline followed by reduction affored the β-amino alcohol in excellent 

yield and distereoselectivity, (scheme -1.9). 
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Scheme- 1.9 

 

Bronsted Basic Organocatalysis:
 

As compared to Bronsted acidic catalysis the information on the Bronsted basic 

organocatalysis are relatively scares. In 2000, the group of Deng
16

 reported the cinchona alkaloid 

catalysed enantioselective opening of readily accessible prochiral cyclic anhydrides. The chiral 

hemiester with one or multiple stereogenic centres and two distinct functionalities were readily 

obtained in high to excellent yields and enantiomeric excess. (Scheme-1.10).  
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Scheme-1.10 

 

Bronsted Acidic Organocatalysis: 

Recently, Jacobsen et al. have developed highly enantioselective Strecker reactions
17

 and 

Mannich reactions
18

 catalyzed by peptide-based thiourea derivatives as chiral Brønsted acids. 

The Bronsted acid organoctalysis has been recently extensively studied and well documented in 
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the literature. A plothera of Bronsted acid based on phosphorus and boron in particular, chiral 

catalyst have been synthesized in their pioneer work by group of List.  

The various Bronsted acid catalysed reactions have been reviewed below 

a) Addition of active methylene compound to imine 

In 2004, Terada. et al.
19

 reported the binol phosphoric acid derivatives which serve as 

highly effective catalyst for the direct addition of acetyl acetone to N-Boc-protected arylimines 

to construct the β-aminoketones in excellent yields and enantioselective under extremely mild 

conditions, (scheme-1.11). 
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Scheme-1.11 

 

b) Reductive amination of aldehydes and ketones 

In 2006, MacMillan et al.
20

 first of all developed the enantioselective organocatalytic 

reduction amination of aldehydes and ketones in the presence of Hantsch ester mediated by binol 

based phosphoric acid catalyst in good to high yield. The method was found to be highly 

stereoselective as it provided the corresponding 2
0
 amine in high to excellent enantiomeric 

excess, (scheme-1.12). 
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Scheme-1.12 

 

c) Micheal Addition 

In 2003, Takemoto et al.
21 

reported the thiourea derivative catalyst as a bifunctional 

organocatalyst which promoted the Micheal reaction of malonates to various nitroolefins to gave 

nitro malonates derivatives in good to high yields and excellent enantioselectivitiy, (scheme-

1.13). 
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d) Morita-Baylis-Hillman 

Schaus et al.
22

 in 2003, developed a highly enantioselective asymmetric Morita-Baylis-

Hillman reaction involving the addition of cyclohexenone to aldehydes catalysed by a chiral 

BINOL derived Bronsted acid and yields were obtained in good to excellent with excellent 

enantiomeric excess, (scheme-1.14).  
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