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The Study of Exponentiated Gumbel Distribution

and Related Inference Through Simulation
Chandrakant S. Kakade *
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(MS) India.

"Corresponding author: cskboss08@gmail.com

ABSTRACT

Two parameter Exponentiated Gumbel (EG) distribution is a right skewed
unimodal distribution. We discuss point and interval estimation of parameters of EG
distribution by the method of maximum likelihood and provide an expression for the
Fisher information matrix. A bootstrap method to obtain confidence interval is also
discussed. Inference for R=P(Y<X) is provided when X and Y are independently but
not identically EG distributed random variables. Testing for R based on exact and
asymptotic distribution is discussed along with simulation study.

KEYWORDS
Maximum likelihood estimator, Fisher information matrix, uniformly minimum
variance unbiased estimator and Bayes’ estimator.

1. INTRODUCTION

In literature, exponentiated family of distributiaefined in two ways. If F(8) is
cumulative distribution function (c.d.f.) of based distribution then by adding one
more parameter (say), the c.d.f. of exponentiated base line distrifmutis G(xB,a)
given by

(@) G(xB,a)=[ F(xM)1* ,0>0,8@ andxIR.
(b) G(xB,0)=1-[1- F(xB) ]* ,0>0,08@ and xIR.

Gupta et al. (1998) introduced the Exponentiatedpobential (EE)
distribution as a generalization of the standarghdevential distribution. The two
parameter EE distribution associated with definit{a) above, have been studied in
detail by Gupta and Kundu (2001) which is a sub-ehcof the Exponentiated
Weibull distribution, introduced by Mudholkar antirvastava (1993). S. Nadarajah
(2006) introduced Exponentiated Gumbel (EG) distidn using (b) above.
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The cumulative distribution function of the EG disttion is defined by

a

Fepo)=Gho)f = exr{—e_”

,a, 0>0 , -0c0<x<0o (1.1)
which is simply thex™ power of c.d.f. of the Gumbel distribution.
The Probability density function (p.d.f.) corresgorg to (1.1) is

(24

a
flhoo)=—|exp—e ° e
o

Q =

, 0, 0>0 , 00<X<0co (1.2)

Exponentiated Gumbel p.d.f. for a=1,2,4,.6

1(x)

=

Figure-1. Probability density function.

We shall write x ~ EG{,0) to denote an absolutely continuous random
variable X having the EG distribution with shapeal atale parameters ameando
respectively whose p.d.f. is given by (1.2). Thepsds of p.d.f. for EG distribution
with scale parameter=1 and various values of parametief=1, 2, 4, 0.6) are shown
in the above Figures. Fig. 1 shows that it is ammodal and right skewed density
function.

2. MAXIMUM LIKELIHOOD ESTIMATOR AND THE FISHER
INFORMATION MATRIX

Suppose XX,.....X, is a random sample from E&G6). Therefore, the log-
likelihood function L for the observed sample is

L=nlna —nlna—lzn: X, —aZn:e% (2.1)

i=1 i=1
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Therefore, to obtain the MLE’s af ando , either we can maximize (2.1) directly
with respect tm ando or we can solve the non-linear normal equationshvare

oL =2-Ye 7 =0 (2.2)
o

From (2.2), we obtain the MLE’s of as a function o, saya(c) as

n

n _X

Ye©

i=1

Case 1: If the scale parameter is known ( s&y1), the MLE of the parameter can
be obtained directly from (2.4).

a(o) = (2.4)

Lemma (2.1): For known scale parameter ( s&yl) the p.d.f. ofa is

n+l _na
£y =2 (W] L L ys0  (2.5)
n oaly

Proof : SupposeW :(— 2(12 In(expee’xi)))then W has chi-square distribution
with 2n d.f., since(expee‘xi))a is c.d.f. of standard EG distribution and follows
uniform distribution over (0,1). Let = 2;:/_0: , then c.d.f. of Y is given as

P(r<y)= P(Z"“s y) =1—P(W 52”"‘] (2.6)
w y

Using Chi-square distribution , the p.d.f. correspondin(?.6) is

no

1 n+l _na
fy(y,a)=("a] e ? y>0
nlal\ y

Lemma (2.2): For known scale parameter ( sayl) , the 100(18)% confidence
interval of a is given by

[ Y e Y e j
- 2n,012, - 2n,1-012
n n _
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Case 2: If both the parameters are unknown, first thenestie of the scale parameter
can be obtained by using maximum likelihood estiomainethod

L (a(0),0)= c- nlnzn: e_% —nlnc—lzn:xi (2.7)
i=L Gi=1

With respect too. Here C is a constant independent @f Once ¢ is
obtained, acan be obtained from (2.4) as(c). Therefore, it reduces the two-
dimensional problem to a one-dimensional problem.

In this situation we use the asymptotic normaligsuit to obtain the
asymptotic confidence interval. We can state tialtas follows.

x/ﬁ(é -0) - N, (O, 1710)) where 10) is the Fisher Information matrix.

g o] o’ A
(== Loa?) TLows and6 = (a,5) , 8=(a,0),
“n| (9 %L
E[MJ E[(,sz

2 _ 2 n
g2t |=2n, L P of STATRY
a(x o 3(13(5 (52Ot i=1
’L)_n 2@ 20° & o 2
2= 2 S Einv) -2 S Ednuy) -—2 - Y E(ny,
[662] 62 Gzé (nvi) 2(162; (n) ZGGZE ()

where y and v has gamma distribution with parametersifand (1¢) respectively.
Since® is unknown, 1(8) is estimated by replacirwith its MLE and this can be
used to obtain the asymptotic confidence intergts ando.

2.1. Bootstrap Confidence Interval:

In this subsection, we propose a percentile bagistnethod (Efron, 1982) for
constructing confidence interval afando which is as follows.

Step-1: Generate random samplegxy,.....x, from EG(@,0) and computez and ¢
using maximum likelihood method.

Step-2: Using ¢ and 6 generate a bootstrap sampig ,x5,.....x, from ES(d ,

¢). Based on bootstrap samples compute bootsttbtpa&e&* ands .
Step-3: Repeat step-2 NBOOT times (usually NBOOT=1000).
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Step-4: Compute cumulative distribution function af ands say H(x) and G(x)
respectively , where H(x)= Fﬁf < x) and &Bom_p(x) = H‘l(x) and G(x)= P{s*s
X) and Gggot—p (X) = G }(x) for a given x. The approximate 10@)R% bootstrap
confidence intervals fan ando are given by
Gsoo-p ©12) s Gpooi—p @=612))  and (5 goor p(3/2) , Spoot-p 1~3/2))
respectively.
3. POINT AND INTERVAL ESTIMATION OF R

Now we consider the problem of estimating R=P(Y<Xhen X and Y are
independent EG random variables with shape, scalenpetersa , 0 andf3 , o

respectively then  R=P(Y<X)

_a
o+

B

Case 1: When scale parameter 0 is unknown.

Suppose XXa,.....Xn is a random sample from EG6) and VY,Y,,....Yn is a
random sample from EQ4,0). Therefore, the log-likelihood function L of, 3 and
o for the observed sample is

— n % Y En:xl +iy/)
L= ina —aYe +minf-pYe ° —(m+n)|na—{"lcr"l, (3.1)
-~ n ~ m
hence MLE's ofa and 3 as « Se— and f=— —
X m y;
D expt) > expt--7)
=1 o -1 o
Therefore, the MLE of R namel1§1 is given by I%l =— 2 (3.2)
o+

Now to obtain asymptotic distribution of R, we firebtain the asymptotic

distribution of (&,,@,&). Based on the asymptotic distribution &, we obtain
asymptotic confidence interval of R. Let us denbi Fisher Information matrix of
(a,B,0) as 1@,B,0) where
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_ o) e
I(a,B,0) = E[G/B’aa] E[O,BZJ

Iy
=\ 1y Iy Say.
I

MOI’GOVGI’Eﬂ :_l and Eﬁ :_ﬂ1 E| azL =F aZL =0
9a.? 2 ap2 2 dadp 0pda

o
2 n 2 2 m 2
YL % S gy =6 9L | f OL )= P Spgnyy=5 9L
0ado | 5 2% 0oda 0poc | 428 =1 J do0a

2 n 2 n 2 n
L n 2 a o 2
E| — Z———E E(lnw-)—ig E(lnu-)—ig E(Inu;)
[ ] o? 2 Yog2 o0t = Y22t i=1 '

[S%)

do 2 (2B

m 2 m 2 m
%_AZEU“Z])_ / D Elnv)) - 4 > Eliny;)*
. '::L

2 2 of1 2 p
o o A o277 o 2% 3

where yand yhas gamma (2) and (23) and w and z has exponentiakt and 3
distribution respectively.

Theorem 1: As m, n - c and n . p then
n

((& —a),(,é —,B), (5 —0)) - N3 (0A(a,B,0)),

a;p; 0 a3

where A@BO)=| 0 ay ay| and elements of A( B, o) are the
a3y dzp daszs

corresponding elements of the inverse of the Fisifermation matrix I, 3, o).

Proof : Proof follows from asymptotic properties of MLEsder regularity
conditions and multivariate central limit theorem.

Theorem 2: As m, n - « and . p then \/Z(IQ -R) - N(O,B), where
m
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- 1
u(a+p)*

B (/fz(a 24133 ‘“53)‘2“5\/;“&‘31"'“21’(“ 1#33‘“123))

and u=a @ % 33a 19 26 32~ A1 2431

Proof : Proof follows from invariance property of CAN esttor under continuous
transformation, and omitted for brevity.

Using Theorem 2, we can obtain asymptotic confidanterval of R as

I VB (3.3)

—_—, R+Z_ -
1—6/2\/5 15/2Jﬁ

Remark (3.1): To estimate variance B, the empirical Fisher'sinfation matrix and
MLEs of a, B ando may be used. However simulation study due to Kuadd
Gupta (2005) for EE distribution indicates thahfidence interval defined in (3.3)
has comparatively low coverage probability. Theyehauggested bootstrap method
to get a better confidence interval with respeacdeerage probability.

R-Z

Bootstrap confidence interval:

Step-1: Generate random samplegx,.....x, from ES@,0) and y,y»,....ym from
ES@,0) and computexr, § ands using maximum likelihood method.

Step-2: Using ¢ and 6 generate a bootstrap sampleI xzxn from ES(a ,0)

and similarly using,@ and ¢ generate a bootstrap sampfp,y;,....,y:ﬂ from ES(ﬁ
, ). Based on these bootstrap samples compute apestimate of R,

R'=—2__ whered and " are the MLEs ofua and B obtained from the
o +p
corresponding bootstrap samples.

Step-3: Repeat step-2 NBOOT times (usually NBOOT=1000).

Step-4: Compute cumulative distribution function af | say H(x), where

H(X)= P(R" < x) and Rpg,,—,(x) = H (x) for a given x. The approximate
100(19)% bootstrap confidence interval is given by
(I’éB()ot—p (5 /2) ’ I’-\;Boot—p (1_ Y /2)) (34)

Case 2: When scale parameter o is known.
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Without loss of generality, we can assume tball. Suppose XX,.....Xn IS a

random sample from EG(1) and ¥,Y,,....Yynis a random sample from H&L)
and based on the samples we want to estimate RdRasthe above sample, it is

clear that , the MLE of R namelly2 isgivenby g = a_ where
a+p
Ge and jo_m
D exp-x;) > expty;)
i=1 j=

Lemma (3.1) : The p.d.f. ofR,is given by

o T
o= (5) e

mf3
o<r<1 (3.5)
Proof : R, can be expressedas , _ 1 Where
Ry = mW
v

=-> In(exp(—e“f)) andV =-) In(exp(—e_"")). We see that €W and -BV are
two independent chi-square random variables witra2d 2m degrees of freedom

(d.f.) respectively. ThereforeR, can be rewritten as ,QZ:(“/?Z)_I, where Z
(44

W has F distribution with (2n, 2m) degrees of freed@l.f.). Therefore
- m

p.d.f. of R2 can be obtained easily and is as given in equéBiat).

Lemma (3.2) : An exact 100(3)% confidence interval of R is

1+F, , |21 71,1+F N ) ’ (3.6)
(renerlt A foronal )

Lemma (3.3) : The asymptotic 100($)%6 confidence interval of R is

[[z%z—zmm 1%2(1—1%2))(1%2+ZH,2 men ,gz(l_,gz)D (3.7)

where 4.z is the (1y/2)™ quantile of the standard normal distribution.

Proof : The MLE 1%2 Is asymptotically normal with mean R and variance
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2 R aR
00; 69

where 01,62) = (@,8) and 77} is the (i,j" element of the

i=1j=1
inverse of the Fisher’s information matrixi|B) about the parameters,) and

n

I(a,B)= - | «®
0

, (See Rao (1965)). It can be seen thﬁt _( JR 1-R)>.
mn

£

Therefore the asymptotic 100¢)% confidence interval of R can be obtained using
standardized statistic as a pivotal quantity. Weaee ‘R’ in the asymptotic variance
by its MLE.

We perform some simulation experiments using pétleebootstrap method
when scale parameter is unknown to observe the behavior of the MLE and
confidence intervals for various sample sizes andvarious values ofa|, 3). We
consider the sample sizes (n, m)= (10,10), (10, @), 20), (20, 40), (40, 40) and
the parameter values= 2, 0=4 andf} = 2, 3, 6 and 8. Average biases and mean
squared errors (MSEs) of R are reported over 1@flcations for 1000 bootstrap
samples. We compute 95% confidence intervals u@m) and estimate coverage
percentages and average lengths of confidencevahtérhe results are reported in
Table 1.

We also perform some simulation experiments vwduahe parameter is known
(0=1). We consider the sample sizes (n, m)= (10(10), 20), (20, 20), (20, 40), (40,
40) and the parameter values 2 andp = 2, 3, 6 and 8. Average biases and mean
squared errors (MSEs) of R are reported over 108plcations. We compute 95%
confidence intervals and estimate coverage pergestand average lengths of both
asymptotic and exact confidence interval. The tssare reported in Table 2.

Table-1. Biases, MSEs, Confidence Lengths and Coverage Percentages of C. 1.

Sample 2 3 6 8
Si1ze

- -0.0005 -0.0096 -0.0054

(10,10) | 0.0058(0.0131) (0.0124) (0.0077) (0.0061)
0.4273(93.00) | 0.4139 (93.00)| 0.3286 (90.70)| 0.2899 (91.40)

0.0125 0.0095 0.0088 0.0011

(10, 20) (0.0109) (0.0097) (0.0067) (0.0050)
’ 0.3748 (92.40)| 0.3672 0.3052 (93.10)| 0.2643 (92.90)

(0.9410)
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-0.0018 -0.0018 -0.0044 -0.0062

(20, 20) | (0.0067) (0.0070) (0.0046) (0.0031)
0.3120 (93.70)| 0.3013 (92.80)| 0.2454 (91.50)| 0.2144 (92.30)
0.0057 0.0067 0.0031 -0.0001

(20, 40) | (0.0050) (0.0050) (0.0033) (0.0026)
0.2706 (94.00)| 0.2630 (93.50)| 0.2175 (93.90)| 0.1909 (93.40)
0.0012 -0.0032 -0.0049 -0.0028

(40, 40) | (0.0033) (0.0031) (0.0021) (0.0016)
0.2205 (94.20)| 0.2134 (94.40)| 0.1762 (93.90)| 0.1567 (93.60)

(The first row represent the average biases anddViSécond row represent the
average length, coverage percentages of the comdsyy asymptotic bootstrap

confidence interval.)

Table-2. Biases, MSEs, Confidence Lengths and Coverage Percentages of C. 1.

Sample
size

2

3

6

8

(10, 10)

0.0003(0.0119
0.4174(91.47)
0.4058(94.83)

0.0033(0.0110
0.4027(91.86)
0.3935(95.22)

0.0087(0.0073)
0.3237(91.77)
0.3258(95.30)

0.0098(0.0056)
0.2810(91.50)
0.2876(94.93)

(10, 20)

0.0042(0.0090
0.3659(92.60)
0.3581(94.70)

0.0093(0.0086
0.3542(92.30)
0.3507(94.46)

0.0120(0.0057)
0.2851(93.52)
0.2927(94.72)

0.0105(0.0043)
0.2459(92.90)
0.2572(94.74)

(20, 20)

0.0018(0.0060
0.3024(93.45)
0.2977(95.02)

0.0016(0.0057
0.2909(93.11)
0.2872(94.78)

0.0056(0.0037)
0.2313(93.15)
0.2323(94.61)

0.0045(0.0026)
0.1984(93.49)
0.2012(95.18)

(20, 40)

0.0025(0.0045
0.2636(94.03)
0.2605(95.15)

0.0040(0.0043
0.2539(93.83)
0.2527(94.98)

0.006290.0027
0.2017994.220
0.2048(94.910

0.0056(0.0021)
0.1732(94.10)
0.1776(94.92)

(40, 40)

0.0016(0.0028

) 0.0018(0.001

B)

0.0021(03)0
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0.0009(0.0030] 0.2082(94.25) | 0.1636(94.22) | 0.1402(94.40)
0.2165(94.57) | 0.2068(95.15) | 0.1640(95.04) | 0.1413(95.23)
0.2147(95.39)

(The first rows represent the average biases anddiresponding MSEs are
reported within brackets. Second and third rowsasgnt the average lengths and the
corresponding coverage percentages of the asymaiiadi exact confidence intervals

respectively.)

Based on the proposed Bootstrap and exact methedyvierall findings in Tables 1
and 2 are satisfactory. When sample sizes areaseds bias and MSE decrease for
each parameter value, demonstrating the consisteihtye method. In each case's
coverage probability closely

approximates the confidence coefficient, and theraye length of the confidence
interval is small and finite.

4. TESTING OF HYPOTHESIS

The EG distribution is ordered with respect to tiklihood ratio’ ordering (X< |
Y). Sincea andf3 both are unknown, it will be of interest to knovinethera<(3 or
not. We put this as a problem of hypothesis testlg consider test for hypothesis
Ho:a < against H:a >p. Equivalently we cantest (sR<0.5 against H
R > 0.5. Using Lemma (3.3), an asymptotic testioé g rejects the null hypothesis

i, [,a _1]> min (4.1)
22 16mn

where Z.,is the (1y)™ quantile of the standard normal distribution. Ao exact
test of sizey for the above problem, using lemma (3.2), rejdogsnull hypothesis if
(152 ]> Fyponay (4.2) where Fom; 1y is the (1y) ™ quantile

2
of F distribution with (2n, 2m) d.f. As an indepemd interest, we can also obtain an

asymptotic and exact test of the desired sizelferratives H;: R<0.5 and H’i: R#
0.5.

Through simulation study, comparison of power hesnomade for two test given in
(5.1) and (5.2). The power was determined by geingrd 000 random samples of
sizes (n, m)=(10,10), (10,20), (20,20), (20,40) &4@40). The results for the tests at
the significance levely=0.01 and 0.05 are presented in Table 3 and Table 4
respectively. Pand B are referred to as power based on asymptotic aact éast as
defined in (5.1) and (5.2) respectively.
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Table 3 : Power of the test based on asymptotic and exatritmition of Ry=0.01.

R (10, 10) (10, 20) (20, 20) (20, 40) (40, 40)
P, P, P, P, P P, P, P, Py P,
0.500| 0.006| 0.089| 0.010| 0.020| 0.007| 0.009| 0.012| 0.017| 0.009| 0.010
0.526| 0.011| 0.016| 0.018| 0.034| 0.019| 0.022| 0.030| 0.040| 0.027 | 0.030
0.555| 0.021| 0.029| 0.039| 0.066| 0.048| 0.042| 0.063| 0.085| 0.082| 0.087
0.588| 0.039| 0.057| 0.072| 0.113| 0.098| 0.109| 0.142| 0.181| 0.210]| 0.223
0.625| 0.079| 0.105| 0.137| 0.203| 0.208 | 0.227| 0.307| 0.368 | 0.464 | 0.478
0.666 | 0.159| 0.208| 0.257| 0.347| 0.408| 0.434| 0.556| 0.620| 0.766| 0.777
0.714| 0.301| 0.366 | 0.460| 0.567| 0.675| 0.701| 0.839| 0.876 | 0.955| 0.958
0.769| 0.539| 0.606| 0.744| 0.827| 0.914| 0.924| 0.980| 0.987| 0.998| 0.999
0.833| 0.840| 0.879| 0.956| 0.978| 0.995| 0.996| 0.999| 0.999 1 1
0.909| 0.992| 0.995| 0.999| 0.999| 1 1 1 1 1 1
Table 4 : Power of the test based on asymptotic and exatthiition of R)y=0.05.
R (10, 10) (10, 20) (20, 20) (20, 40) (40, 40)
P, P, | P, P, P, P, P, P, P,
0.500 | 0.046/ 0.050 0.05/ 0.043 0.046 0.047 0.057 0/065 0.04047(
0.526 | 0.069 0.073 0.088 0.109 0.085 0.087 0.114 0J/129 (.11B16(
0.555| 0.119 0.12% 0.148 0.1/9 0.1y1 0.175 0.207 0{229 0.25258(
0.588 | 0.178 0.189 0.240 0.2748 0.293 0.298 0.370 0/402 0.47/982(
0.625| 0.282] 0.293 0.376 0.422 0.4f/9 0485 0.591 0/622 0.72830(
0.666 | 0.431] 0.444 0.564 0.610 0.697 0.702 0.815 0/837 0.92021(
0.714| 0.627, 0.639 0.765 0.804 0.881 0.884 0.959 0J967 (.99292(
0.769 | 0.830 0.840 0.931 0.945 0.981 0.982 0.997 0/998 1
0.833 | 0.966/ 0.968 0.995 0.996 0.999 0.999 i il 1
0.909 | 0.999 0.999 1 1 1 1 1 1 1 1
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It is observed from the simulation study that (gttb the tests perform well with
respect to the power. (ii) Power of the test baseéxact test is slightly higher than
that of asymptotic test. (iii) Both the tests aomgistent in the sense that as sample
sizes increase, their power show improvement. Aivgomparison with the usual
nonparametric Wilcoxon Mann Whitney test fog: HP(Y<X)=0.5 was made. It is
found that parametric procedure (i.e., exact aryinpsotic test) have better power
than the more general WMW-test.

S. CONCLUSIONS

In this paper we estimate reliability R for Expatiated Gumbel distribution
with different shape parameters and same scalengéea The performance of the
MLE is quite satisfactory in terms of biases andBdSIt is observed that when
sample sizes increase the MSEs decreases. ltegetifé consistency property of the
MLE of R. The exact distribution of MLE of R is @ed and used for constructing
confidence interval. The asymptotic confidencerwdebased on the MLE of R also
works well for samples of sizes greater than oraédqo 20. The exact as well as
asymptotic test for testing reliability R has begven. The performances of both the
tests are satisfactory with respect to the powan thsual nonparametric Wilcoxon
Mann Whitney test.
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