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ABSTRACT 

Two parameter Exponentiated Gumbel (EG) distribution is a right skewed 

unimodal distribution. We discuss point and interval estimation of parameters of EG 

distribution by the method of maximum likelihood and provide an expression for the 

Fisher information matrix. A bootstrap method to obtain confidence interval is also 

discussed. Inference for R=P(Y<X) is provided when X and Y are independently but 

not identically EG distributed random variables. Testing for R based on exact and 

asymptotic distribution is discussed along with simulation study.  

KEYWORDS  
Maximum likelihood estimator, Fisher information matrix, uniformly minimum 

variance unbiased estimator and Bayes’ estimator. 

………………………………………………………………………………………….

1. INTRODUCTION 

In literature, exponentiated family of distribution defined in two ways. If F(x/θ) is 
cumulative distribution function (c.d.f.) of base line distribution then by adding one 
more parameter (say α), the c.d.f. of exponentiated base line distribution is G(x/θ,α) 
given by 

(a) G(x/θ,α)= [ F(x/θ) ]α    , α>0 , θ∈Θ  and x∈ R. 

(b) G(x/θ,α)= 1-[1- F(x/θ) ] α    , α>0 , θ∈Θ  and x∈ R. 

Gupta et al. (1998) introduced the Exponentiated Exponential (EE) 
distribution as a generalization of the standard Exponential distribution. The two 
parameter EE distribution associated with definition (a) above, have been studied in 
detail by Gupta and Kundu (2001) which is a sub-model of the Exponentiated 
Weibull distribution, introduced by Mudholkar and Shrivastava (1993). S. Nadarajah 
(2006) introduced Exponentiated Gumbel (EG) distribution using (b) above.  
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The cumulative distribution function of the EG distribution is defined by   
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which is simply the αth power of c.d.f. of the Gumbel distribution.  

The Probability density function (p.d.f.) corresponding to (1.1) is  
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Figure-1. Probability density function. 

We shall write x ~ EG(α,σ) to denote an absolutely continuous random 
variable X having the EG distribution with shape and scale parameters are α and σ 
respectively whose p.d.f. is given by (1.2). The shapes of p.d.f. for EG distribution 
with scale parameter σ=1 and various values of parameter α (=1, 2, 4, 0.6) are shown 
in the above Figures. Fig. 1 shows that it is an unimodal and right skewed density 
function. 

2. MAXIMUM LIKELIHOOD ESTIMATOR AND THE FISHER 

INFORMATION MATRIX 

Suppose X1,X2,…..Xn is a random sample from EG(α,σ). Therefore, the log-
likelihood function L for the observed sample is 

L= (2.1)    
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Therefore, to obtain the MLE’s of α and σ , either we can maximize (2.1) directly 
with respect to α and σ or we can solve the non-linear normal equations which are  
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From (2.2), we obtain the MLE’s of α as a function of σ, say )σ(α̂  as 
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Case 1: If the scale parameter is known ( say σ=1), the MLE of the parameter α can 
be obtained directly from (2.4).  

Lemma (2.1): For known scale parameter ( say σ=1) the p.d.f. of α̂ is  
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Using Chi-square distribution , the p.d.f. corresponding to (2.6) is  
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Lemma (2.2): For known scale parameter ( say σ=1) , the 100(1-δ)% confidence 
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Case 2: If both the parameters are unknown, first the estimate of the scale parameter 
can be obtained by using maximum likelihood estimation method   

L ( )σ(α̂ ,σ)= 
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With respect to σ. Here C is a constant independent of σ. Once  is 
obtained, α̂can be obtained from (2.4) as )σ(α̂ . Therefore, it reduces the two-
dimensional problem to a one-dimensional problem. 

In this situation we use the asymptotic normality result to obtain the 
asymptotic confidence interval. We can state the result as follows. 
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where ui  and vi has gamma distribution with parameters (2,α) and (1,α) respectively. 
Since θ is unknown, I-1(θ) is estimated by replacing θ with its MLE and this can be 
used to obtain the asymptotic confidence intervals of α and σ. 

2.1. Bootstrap Confidence Interval: 

In this subsection, we propose a percentile bootstrap method (Efron, 1982) for 
constructing confidence interval of α and σ which is as follows. 

Step-1: Generate random samples x1,x2,…..xn from EG(α,σ) and compute α̂  and σ̂   
using maximum likelihood method. 

Step-2: Using α̂  and   generate a bootstrap sample **
2

*
1 ,....,, nxxx  from ES(α̂ ,

σ̂ ).  Based on bootstrap samples compute bootstrap estimate *̂α  and *
σ̂ .  

Step-3: Repeat step-2 NBOOT times (usually NBOOT=1000). 

σ̂

σ̂
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Step-4: Compute cumulative distribution function of  *̂α  and *
σ̂ , say H(x) and G(x) 

respectively , where  H(x)= P( *̂α  ≤ x) and )()(ˆ 1
xHxα pBoot

−
− =   and   G(x)= P( *

σ̂ ≤ 

x) and )x(G)x(σ̂
1
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−

− =    for a given x. The approximate 100(1-δ)% bootstrap 

confidence intervals for α and σ are given by  

   ( ))2/1(ˆ,)2/(ˆ δαδα pBootpBoot −−−  and ( ))2/δ1(σ̂,)2/δ(σ̂ pBootpBoot −−−   

respectively. 

3. POINT AND INTERVAL ESTIMATION OF R 

Now we consider the problem of estimating R=P(Y<X) when X and Y are 
independent EG random variables with shape, scale parameters α , σ and β , σ 

respectively then      R=P(Y<X)  =
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Case 1:  When scale parameter σσσσ is unknown. 

Suppose X1,X2,…..Xn is a random sample from EG(α,σ) and  Y1,Y2,….Ym is a  
random sample from EG( β,σ). Therefore, the log-likelihood function L of α, β and 
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 Therefore, the MLE of R namely 1R̂  is given by        
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Now to obtain asymptotic distribution of R, we first obtain the asymptotic 

distribution of )ˆ,ˆ,ˆ( σβα . Based on the asymptotic distribution of R̂ , we obtain 
asymptotic confidence interval of R. Let us denote the Fisher Information matrix of 
(α,β,σ) as I(α,β,σ) where 
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where ui and vj has gamma (2,α) and (2,β) and wi and zj has exponential α and β 
distribution respectively. 

Theorem 1: As m, n ∞→  and  p
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θβαA   and  elements of A(α ,β, σ) are the 

corresponding elements of the inverse of the Fisher Information matrix I(α, β, σ). 

Proof : Proof follows from asymptotic properties of MLEs under regularity 
conditions and multivariate central limit theorem. 

Theorem 2: As m, n ∞→  and  p
m

n →   then     ),0()ˆ( BNRRn →− ,        where 
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Proof : Proof follows from invariance property of CAN estimator under continuous 
transformation, and omitted for brevity. 

Using Theorem 2, we can obtain asymptotic confidence interval of R as 
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Remark (3.1): To estimate variance B, the empirical Fisher’s information matrix and 
MLEs of α, β and σ may be used. However simulation study due to Kundu and 
Gupta (2005) for  EE distribution indicates that confidence interval defined in (3.3) 
has comparatively low coverage probability. They have suggested bootstrap method 
to get a better confidence interval with respect to coverage probability.  

Bootstrap confidence interval: 

Step-1: Generate random samples x1,x2,…..xn from ES(α,σ) and  y1,y2,….ym  from 
ES(β,σ) and compute α̂ , β̂  and σ̂   using maximum likelihood method. 

Step-2: Using α̂ and σ̂generate a bootstrap sample **
2

*
1 ,....,, nxxx  from ES(α̂ , σ̂ )  

and similarly using  β̂  and σ̂  generate a bootstrap sample **
2

*
1 ,....,, myyy  from ES(β̂  

, σ̂ ). Based on these bootstrap samples compute bootstrap estimate of R,  

**

*
*

ˆˆ
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= ,  where *α̂  and *β̂  are the MLEs of α and β obtained from the 

corresponding bootstrap samples.     

Step-3: Repeat step-2 NBOOT times (usually NBOOT=1000). 

Step-4: Compute cumulative distribution function of *R̂ , say H(x), where 

H(x)= P( *
R̂ ≤ x) and )()(ˆ 1

xHxR pBoot
−

− =  for a given x. The approximate              

100(1-δ)% bootstrap confidence interval is given by  

 ( ))2/1(ˆ,)2/(ˆ δRδR pBootpBoot −−−        (3.4) 

Case 2: When scale parameter σσσσ is known. 
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Without loss of generality, we can assume that σ=1. Suppose X1,X2,…..Xn is a 
random sample from EG(α,1) and  Y1,Y2,….Ym is a  random sample from EG(β,1) 
and based on the samples we want to estimate R. Based on the above sample, it is 
clear that , the MLE of R namely 2R̂  is given by 
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Proof : 2R̂  can be expressed as   
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two independent chi-square random variables with 2n and 2m degrees of freedom 

(d.f.) respectively. Therefore 2R̂  can be rewritten as  
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p.d.f. of 2R̂ can be obtained easily and is as given in equation (3.7). 

Lemma (3.2) : An exact 100(1-γ)% confidence interval of R is 
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Lemma (3.3) : The asymptotic 100(1-γ)% confidence interval of R is 
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    (3.7) 

where Z1-γ/2 is the (1-γ/2)th quantile of the standard normal distribution. 

Proof : The MLE 2R̂  is asymptotically normal with mean R and variance  
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Therefore the asymptotic 100(1-γ)% confidence interval of R can be obtained using 
standardized statistic as a pivotal quantity. We replace ‘R’ in the asymptotic variance 
by its MLE. 

We perform some simulation experiments using percentile bootstrap method 
when scale parameter σ is unknown to observe the behavior of the MLE and 
confidence intervals for various sample sizes and for various values of (α, β). We 
consider the sample sizes (n, m)= (10,10), (10, 20), (20, 20), (20, 40), (40, 40)  and 
the parameter values α= 2, σ=4 and β = 2, 3, 6 and 8. Average biases and mean 
squared errors (MSEs) of R are reported over 1000 replications for 1000 bootstrap 
samples. We compute 95% confidence intervals using (3.4) and estimate coverage 
percentages and average lengths of confidence interval. The results are reported in 

Table 1. 

  We also perform some simulation experiments when scale parameter σ is known 
(σ=1). We consider the sample sizes (n, m)= (10,10), (10, 20), (20, 20), (20, 40), (40, 
40) and the parameter values α= 2 and β = 2, 3, 6 and 8. Average biases and mean 
squared errors (MSEs) of R are reported over 10000 replications. We compute 95% 
confidence intervals and estimate coverage percentages and average lengths of both 
asymptotic and exact confidence interval. The results are reported in Table 2. 

Table-1. Biases, MSEs, Confidence Lengths and Coverage Percentages of C. I. 

Sample 

size 
2 3 6 8 

(10, 10) 

-
0.0058(0.0131) 

0.4273(93.00) 

-0.0005 
(0.0124) 

0.4139 (93.00) 

-0.0096 
(0.0077) 

0.3286 (90.70) 

-0.0054 
(0.0061) 

0.2899 (91.40) 

(10, 20) 

0.0125 
(0.0109) 

0.3748 (92.40) 

0.0095 
(0.0097) 

0.3672 
(0.9410) 

0.0088 
(0.0067) 

0.3052 (93.10) 

0.0011 
(0.0050) 

0.2643 (92.90) 
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(20, 20) 
-0.0018 
(0.0067) 

0.3120 (93.70) 

-0.0018 
(0.0070) 

0.3013 (92.80) 

-0.0044 
(0.0046) 

0.2454 (91.50) 

-0.0062 
(0.0031) 

0.2144 (92.30) 

(20, 40) 

0.0057 
(0.0050) 

0.2706 (94.00) 

0.0067 
(0.0050) 

0.2630 (93.50) 

0.0031 
(0.0033) 

0.2175 (93.90) 

-0.0001 
(0.0026) 

0.1909 (93.40) 

(40, 40) 

0.0012 
(0.0033) 

0.2205 (94.20) 

-0.0032 
(0.0031) 

0.2134 (94.40) 

-0.0049 
(0.0021) 

0.1762 (93.90) 

-0.0028 
(0.0016) 

0.1567 (93.60) 

(The first row represent the average biases and MSEs. Second row represent the 
average length, coverage percentages of the corresponding asymptotic bootstrap 

confidence interval.) 

Table-2. Biases, MSEs, Confidence Lengths and Coverage Percentages of C. I. 

Sample 

size 
2 3 6 8 

(10, 10) 

-
0.0003(0.0119) 

0.4174(91.47) 

0.4058(94.83) 

0.0033(0.0110) 

0.4027(91.86) 

0.3935(95.22) 

0.0087(0.0073) 

0.3237(91.77) 

0.3258(95.30) 

0.0098(0.0056) 

0.2810(91.50) 

0.2876(94.93) 

(10, 20) 

0.0042(0.0090) 

0.3659(92.60) 

0.3581(94.70) 

0.0093(0.0086) 

0.3542(92.30) 

0.3507(94.46) 

0.0120(0.0057) 

0.2851(93.52) 

0.2927(94.72) 

0.0105(0.0043) 

0.2459(92.90) 

0.2572(94.74) 

(20, 20) 

-
0.0018(0.0060) 

0.3024(93.45) 

0.2977(95.02) 

0.0016(0.0057) 

0.2909(93.11) 

0.2872(94.78) 

0.0056(0.0037) 

0.2313(93.15) 

0.2323(94.61) 

0.0045(0.0026) 

0.1984(93.49) 

0.2012(95.18) 

(20, 40) 

0.0025(0.0045) 

0.2636(94.03) 

0.2605(95.15) 

0.0040(0.0043) 

0.2539(93.83) 

0.2527(94.98) 

0.006290.0027) 

0.2017994.220 

0.2048(94.910 

0.0056(0.0021) 

0.1732(94.10) 

0.1776(94.92) 

(40, 40) - 0.0016(0.0028) 0.0018(0.0018) 0.0021(0.0013) 
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0.0009(0.0030) 

0.2165(94.57) 

0.2147(95.39) 

0.2082(94.25) 

0.2068(95.15) 

0.1636(94.22) 

0.1640(95.04) 

0.1402(94.40) 

0.1413(95.23) 

(The first rows represent the average biases and the corresponding MSEs are 
reported within brackets. Second and third rows represent the average lengths and the 
corresponding coverage percentages of the asymptotic and exact confidence intervals 

respectively.) 

Based on the proposed Bootstrap and exact method, the overall findings in Tables 1 
and 2 are satisfactory. When sample sizes are increased, bias and MSE decrease for 
each parameter value, demonstrating the consistency of the method. In each case's 
coverage probability closely  

approximates the confidence coefficient, and the average length of the confidence 
interval is small and finite. 

4. TESTING OF HYPOTHESIS 

The EG distribution is ordered with respect to the ‘likelihood ratio’ ordering (X ≤ lr 
Y). Since α and β both are unknown, it will be of interest to know whether α<β or 
not. We put this as a problem of hypothesis testing. We consider test for hypothesis   
H0:α ≤ β   against   H1 : α > β.   Equivalently we can test    H0: R ≤ 0.5   against   H1: 
R > 0.5. Using Lemma (3.3), an asymptotic test of size γ rejects the null hypothesis 

if,  
γ−

+>






 − 12 162

1ˆ Z
mn

nm
R        (4.1) 

where Z1-γ is the (1-γ)th quantile of the standard normal distribution. Also an exact 
test of size γ for the above problem, using lemma (3.2), rejects the null hypothesis if 
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− 1;2,2

2

2

ˆ1

ˆ
mnF

R

R  ,       (4.2)                   where F2n, 2m; 1-γ   is the (1-γ) th  quantile 

of F distribution with (2n, 2m) d.f. As an independent interest, we can also obtain an 
asymptotic and exact test of the desired size for alternatives H’1: R<0.5 and H’’1: R ≠ 
0.5. 

Through simulation study, comparison of power has been made for two test given in 
(5.1) and (5.2). The power was determined by generating 1000 random samples of 
sizes (n, m)=(10,10), (10,20), (20,20), (20,40) and (40,40). The results for the tests at 
the significance level γ=0.01 and 0.05 are presented in Table 3 and Table 4 
respectively. P1 and P2 are referred to as power based on asymptotic and exact test as 
defined in (5.1) and (5.2) respectively.  
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Table 3 : Power of the test based on asymptotic and exact distribution of R, γ=0.01. 

R 
(10, 10) (10, 20) (20, 20) (20, 40) (40, 40) 

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

0.500

0 

0.006

0 

0.089 0.010

3 

0.020

1 

0.007

6 

0.009

3 

0.012

3 

0.017

7 

0.009

4 

0.010

5 0.526

3 

0.011

9 

0.016

0 

0.018

7 

0.034

9 

0.019

9 

0.022

0 

0.030

1 

0.040

3 

0.027

9 

0.030

5 0.555

6 

0.021

3 

0.029

7 

0.039

9 

0.066

0 

0.048

1 

0.042

2 

0.063

4 

0.085

1 

0.082

1 

0.087

3 0.588

2 

0.039

9 

0.057

8 

0.072

7 

0.113

4 

0.098

1 

0.109

9 

0.142

8 

0.181

8 

0.210

3 

0.223

3 0.625

0 

0.079

9 

0.105

7 

0.137

3 

0.203

1 

0.208

1 

0.227

2 

0.307

4 

0.368

3 

0.464

0 

0.478

7 0.666

7 

0.159

3 

0.208

5 

0.257

2 

0.347

9 

0.408

3 

0.434

9 

0.556

0 

0.620

3 

0.766

7 

0.777

9 0.714

3 

0.301

8 

0.366

6 

0.460

0 

0.567

5 

0.675

6 

0.701

0 

0.839

2 

0.876

5 

0.955

0 

0.958

3 0.769

2 

0.539

1 

0.606

5 

0.744

8 

0.827

9 

0.914

1 

0.924

3 

0.980

8 

0.987

2 

0.998

8 

0.999

1 0.833

3 

0.840

4 

0.879

3 

0.956

9 

0.978

7 

0.995

6 

0.996

4 

0.999

9 

0.999

9 

1 1 

0.909

1 

0.992

9 

0.995

5 

0.999

7 

0.999

9 

1 1 1 1 1 1 

Table 4 : Power of the test based on asymptotic and exact distribution of R, γ=0.05. 

R 
(10, 10) (10, 20) (20, 20) (20, 40) (40, 40) 

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

0.500 0.046 0.050 0.057 0.073 0.046 0.047 0.057 0.065 0.047 0.047

0.526 0.069 0.073 0.088 0.109 0.085 0.087 0.114 0.129 0.116 0.116

0.555 0.119 0.125 0.148 0.179 0.171 0.175 0.207 0.229 0.257 0.258

0.588 0.178 0.189 0.240 0.278 0.293 0.298 0.370 0.402 0.479 0.482

0.625 0.282 0.293 0.376 0.422 0.479 0.485 0.591 0.622 0.728 0.730

0.666 0.431 0.444 0.564 0.610 0.697 0.702 0.815 0.837 0.920 0.921

0.714 0.627 0.639 0.765 0.804 0.881 0.884 0.959 0.967 0.992 0.992

0.769 0.830 0.840 0.931 0.945 0.981 0.982 0.997 0.998 1 1 

0.833 0.966 0.968 0.995 0.996 0.999 0.999 1 1 1 1 

0.909 0.999 0.999 1 1 1 1 1 1 1 1 
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It is observed from the simulation study that (i) both the tests perform well with 
respect to the power. (ii) Power of the test based on exact test is slightly higher than 
that of asymptotic test. (iii) Both the tests are consistent in the sense that as sample 
sizes increase, their power show improvement. (iv) A comparison with the usual 
nonparametric Wilcoxon Mann Whitney test for H0: P(Y<X)=0.5 was made. It is 
found that parametric procedure (i.e., exact and asymptotic test) have better power 
than the more general WMW-test. 

5. CONCLUSIONS 

 In this paper we estimate reliability R for Exponentiated Gumbel distribution 
with different shape parameters and same scale parameter. The performance of the 
MLE is quite satisfactory in terms of biases and MSEs. It is observed that when 
sample sizes increase the MSEs decreases. It verifies the consistency property of the 
MLE of R. The exact distribution of MLE of R is obtained and used for constructing 
confidence interval. The asymptotic confidence interval based on the MLE of R also 
works well for samples of sizes greater than or equal to 20. The exact as well as 
asymptotic test for testing reliability R has been given. The performances of both the 
tests are satisfactory with respect to the power than usual nonparametric Wilcoxon 
Mann Whitney test. 
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