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ABSTRACT

A variety of parametric and non-parametric inferential procedures are available to
study inference on the parameter of interest in the presence of nuisance parameters,
but majority of these are constrained by certain limitations, as for example depicted
through a variety of examples by Berger (1999). Also, small deviations from the
underlying assumptions might often cause biased statistical inference, especially in
small to moderate size samples. Additionally, existence of the nuisance parameters
also disturbs the statistical properties of the estimation procedures of the parameter
of interest. This motivates us to take brief review on improved or efficient and
unified superior nuisance parameter-free (invariant) inferential procedures under
shape-scale and location-scale family of distributions.

KEYWORDS
Generalized variable approach, Maximal scale invariant Estimator, Integrated
likelihood, Profile likelihood.

1. INTRODUCTION

Lifetime data are often well modelled by distriloms belonging to shape-scale and
location-scale families of distributions and arelely used in almost every discipline

see for example Kulkarni and Powar (2010, 2011)) Bad Kulkarni (2011), Jones

(2015), Powar and Kulkarni (2015), Sengupta et(28l15), Rigby et. al. (2005, 2019)

and Maswadah (2013, 2022).[1-3] The characterigifca dataset can be measured
through the measures of central tendency, dispersiewness, and kurtosis, which are
usually well-defined functions of the shape, scaled location parameters. In this
context, we review some efficient or improved ieferal procedures for shape-scale and
location-scale families.[4] The widely applicableape-scale families for monitoring
lifetime data include the important skewed distiiims like Gamma distribution,
Weibull distribution, Generalized exponential disition, Pareto distribution, Log-
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logistic, Log-normal distribution, Hyperbolic digtution, Exponentiated exponential,
among others. The shape scale family of distribstis characterized by the probability
density function (PDF) of the form:

1 X
gl(x|(a,b)) = Efl (E'b)’ a,b,x > 0.

wherea andb are the scale and shape parameters respecfiMelyh) being a function
of only one parameter, namely the shape pararbeter

Distributions belonging to the location-scale famake used in hydrology, bio-
statistics, various industrial and analytical feeldmong others[5]. Normal, Logistic,
Laplace, shifted exponential, Extreme value distidn are some popular members
of the location-scale family, among others[6].

The PDF of a random variable Y from a location-eci&mily of distributions is
characterized by density function of the form:

gz(y;u)zéfz(y;u)’ y,ueR,a>0.

where n ands are the location and scale parameters respectiaalyf,(z) is the
probability density function of the standard randmariable Z having location
parameter zero and scale parameter one[7-8].

This article aims to review improved inferentialopedures, including point
estimation, interval estimation, and hypothesigirigs related to distributions be-
longing to the location-scale and shajsate families. Improved inference in the case of
point estiméion is often related to the reduction of bias aratiability of the
concerned estimator, while for the case of intemstimation and testing of the
hypotheses it concerns the attainment of nominaklleincreased coverage
probability, and elevated powers, respectively[$-11

Though often nuisance parameters are absolutegnealsfor better modeling
of the data, most often, existence of one or marsamce parameters adversely
impacts the performance of inference procedurestiier parameters of interest.
Existence of nuisance parameters may produce dldeerse impact in a variety of
ways, e.g., increased standard errors of poinimestirs, volumes/ lengths/ area of
confidence region/intervals or rate of convergeatasymptotic properties of the
parameters of interest among others[10]. A wayisw@n attempt for reducing their
impact using some well-known likelihood-bastthniques, including conditional
likelihood, integrated, profile or pseudo-likelirebéunction, and their modifications,
or through the use of pivot or generalized pivoamjities withcompletely known
probability distributions or circumventing the eeisce of nuisance parameters
through the tricky use of invariance principle[11].
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Marginal and conditional likelihoods handle the lgemm by ignoring some of
the data (marginalization) or by ignoring their iahility (conditioning). When the
number of nuisance parameters are large, then nadigition and conditioning are
pretty complex, and sacrifice a sizeable informdti@].

In this article, emphasis relies on the proced@lerinating of the impact of
nuisance parameters through the invariance pricgtd generalized variable
approach, which are expected to result in moreiefit inference procedures by use
of the entire data without losing any details [13].

The invariance principle is used to circumvent #féect of the nuisance
parameters, making use of their property of beingaiiant under a group of
transformations. The maximal scale invariant infieee under a shape-scale family
developed by Kulkarni and Patil (2018) turned aubé much efficient than classical
procedures for the commonly encountered distrilmstienjoying the scale invariance
property [14]. The generalized variable approachnsther efficient tool for exact
nuisance-parameters-free parametric inference itaineparametric families. The
generalized variable approach is based on the glerest extreme region of a test,
the generalization of a data-based extreme regica test, which depends on the
observed data and may involve all the parametengravthe associated p-value is
independent of the nuisance parameters [15-16].

In this article, the improved inferences for théemential problems including
point estimation, one sample test and intervahegtion for the parameter of interest
under the shape-scale family of distributions, sstrestrength reliability estimation
for the exponentiated-scale family of distributiptest for two-sample comparison
for two independent mixed continuous location- scat some non-location-scale
populations and test for homogeneity of variance®ray several location-scale
populations are reviewed[17-19].

In more general set-up, some basic definitions he generalized pivotal
approach are given in the following subsection.

2. PRELIMINARIES
2.1. The Generalized Variable Approach

Tsui and Weerahandi (1989) introduced the conckegeperalized p-values which is
based on the generalized pivot quantity (GPQ) aederplized test variable
(GTV)[20]. Let X be a random variable with cumulative distributfanction (CDF)
Fe(.), where§ = (0, 6) is an unknown parameter vector aid.) is a member of
the shape-scale or location-scale family of distidns. Suppose the interest lies in
the paramete® while § is the nuisance parameter. A GPQ #r GTV and
generalized p-value (GPV) for testing a one-sidgdothesisH,: 8 < 6, verses
Hy: 0 > 0, is defined below:
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Definition 1: Generalized pivot quantity (GPQ)

The GPQGy = Y(X; x,§) for 0 is a random quantity that satisfies following two
conditions:

I. The distribution ofGg for given X = x is free from any unknown
parameters.

il The value ofGy = Y(X; x,§) at X = x does not depend on any
unknown parameter, other th@&h For most of the casegy = 0 at
X = x.

The following invariance property of GPQs is anyeasnsequence of its definition:
Preposition 1: Invariance property of GPQ

If G is a GPQ fo®, then for any functiom, w(Gg) is GPQ forr ().

Definition 2: Generalized test variable (GTV)

A random quantityty = T (X; x,§) is said to be GTV for the parameter of interest
0 if it satisfies following three properties:

I. The probability distribution of, is free from any unknown parameters.

il. The value oftg = T (X; x,§) at X = x does not depend on any
unknown parameter, other th@n

iii. For fixedx, the probabilityP (T (X; x,§) = t|0), for all t> 0 is non-
decreasing i@.

Preposition 2 : Connection between GPQ and GTV

If G is a GPQ foB, thentg =Gy — 0 is a GTV for@ (Weerahandi (1995)).
Definition 3 : Generalized p-value (GPYV)

Based on the GTV defined in Definition 2 and Prepasi2, the generalized
p-value for testind/, mentioned above is defined by

p =Supgen,P(T (X; x,0,6) =t), were, t=T(x; x,0,9)

p = P(T (X; x,084,6) = t),on account of property iii definition 2.

2.2. The Invariance Principle

If X is a random variable having density functitix, 8), 8e® andG be a group of
transformation on the space of valueXahen:

i. ¢ is invariant undeé if ¢(g(x)) = ¢(x) for all x and allgeG.

il T(x) is maximal invariant undef if T(xy) = T(x3) = x1 = g(x,) for
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somegea.
Wherex is observed value &.
2.2.1 Location Invariant

Let x = (x4, x5, ..., X,,), be the random sample from location family witbdton
parameteu andG be the group transformation then

gx) = +u,x+ Wy, xy + ), —oo < pu<oo,then
T(x) = T(g(x)) = (X = X1, o) Xy — Xp—1)-
is called as maximal location invariant estimator
2.2.2 Scale Invariant

Let x = (x4, %3, ..., X,,), be the random sample from scale family with scale
parameter andG be the group transformation then

g(x) = (oxq,0%5, ....,0x,), —o0 < u < oo, then
Xn X1 Xn-1
T =T =(—,—, ., .
(x) =T(g(x)) = ( P . )

T (x) is maximal scale invariant estimator.
2.2.3 Location-Scale Invariant

Let x = (x4, x5, ..., x,,), be the random sample from location-scale family
with location parametep and scale parameter. Let G be the group
transformation then

gx)=(o(x; +p),0(x, + 1), ., 0(x, + 1)), —oo<pu<oo,then

Xp — Xp—1 Xn-1— Xn—2 Xy —X1 X1 —X
T(x) =T(g(x)) = (————, = . , i
X2 —Xq X3 — X3 Xp —Xp—1 Xp — Xq

).

T (x) is maximal location-scale invariant estimator.

The next section reviews the literature relatedtie treatment for nuisance
parameters.

3. LITERATURE REVIEW

There have been numerous articles addressing ansgst study of a variety of
methods for eliminating nuisance parameters.

3.1. Likelihood Based Approach

A pseudo-likelihood or profile likelihood is obt&d by replacing the nuisance
parameters with their maximum likelihood estimataistained by keeping the
parameters of interest fixed. After fixing the imst parameters, the MLEs of
nuisance parameters are expressed as functionsteykest parameters and after
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replacing the nuisance parameters by these fursstibe likelihood gets translated to
a function of only interest parameters. This llk®od behaves similar to the
classical likelihood. For the critical review andrious aspects of pseudo or profile
likelihood, we refer to Kalbfleish and Sprott (1984], Gong and Samaniego
(1981)[22], Fraser and Reid (1989)[23], Barndoriélsen (1985)[24], Barndorff-
Nielsen (1991)[25], Barndorff-Nielsen (1994)[26]da8everini (1998)[27].

Integrated likelihood approach is another way tmiglate nuisance parameters,
For notable analytical results in this context wéer to Berger and Wolpert (1988),
Berger et al. (1999), Severini (2000), and Seve{@®10), among others. Notable
novel recent inferential procedures based on iatedr likelihood have been
developed by SenGupta and Kulkarni (2018), Kulkami SenGupta (2021), Patil
and Kulkarni (2022), and Kulkarni and Patil (202inder directional and linear
data[23-27].

3.2. Invariance Principle Approach:

Nuisance parameters free inference can also bed basean ancillary statistic,
invariant or weighted average power criterion, atwhditional probability as
reported in Linnik and Technica (1968), Cox and kiy (1974), Engelhardt and
Bain (1977), Andrews and Ploberger (1994), and Eiar§$996)[28].

Invariance principle can be coupled with appropridata transformation to
yield nuisance parameters free transformed likekhthat is purely function of the
parameters of interest and the observed sample. dfdigraev and Podraza-
Karakulska (2008) addressed the maximal scale ismvaestimation procedure for
the shape parameter of gamma distribution. Kulkamd Patil (2018a) derived
maximal scale invariant inference for the shapeupater under shape-scale family
of distributions[29].

Tsui and Weerahandi (1989) developed the concegewnéralized test variable
(GTV) and generalized p-value (GPV) for significanesting based on a suitable
generalized extreme region where the p-value iepeddent of the nuisance
parameters[30]. Exact statistical inference basedGdV, GPV, and generalized
confidence interval (GCI) can be found in Weerahdh€95). Hannig et al. (2006)
identified an important subclass of generalizedflquantities (GPQ) which have
asymptomatically correct frequentist coverage. Mkima and Chen (2011) provide a
systematic approach to construct GPQ, GCI, and P9 location-scale family of
distributions[30].

The present work reviews univariate, two-sample amnlti-sample improved
procedures that efficiently handle the nuisanceapaters and the recommended
procedures are given in the next section.

4. IMPROVED INFERENTIAL PROCEDURES
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Kulkarni and Patil (2018a)[31] introduced the maximsaale-invariant estimation
procedure for the shape parameter of the shape-$aaiily of distributions. The
method for obtaining nuisance parameters-freeilikeld for the shape parameter
based on maximal scale-invariant transformationeloninating the nuisance scale
parameter is explained. The resulting likelihoods functions of only the shape
parameter of interest. The results are illustrédegopular shape-scale distributions,
namely the Weibull, the Gamma and the Generalizgdrential (GE) distribution
under complete and type-Il censored samples. Téy@goged maximal scale-invariant
likelihood estimator (MSILE) for the shape parameitinterest, being based on a
proper likelihood function enjoys all asymptotic operties under regular
conditions[31].

A simulation study for the Weibull and Gamma dlstitions revealed an almost
exact relationship between the bias of the MSILE #ime maximum likelihood
estimator (MLE). An improved, almost unbiased eaton (AUE) is proposed by
exploiting this linearity. The extent of reductionbias and mean square error (MSE)
of the MLE, MSILE and AUE reveals the superiorifyMSILE over MLE, and the
superiority of AUE over MSILE and MLE for Weibulhd Gamma distribution[32].
One-sample test anth0(1 — a)% confidence interval for the shape parameter is
developed, and performance is assessed with refgpted observed size of relevant
test procedures, and coverage probability and geemsidth of the associated
confidence interval. Furthermore, the MLE of thalsgarameter being a function of
the shape parameter, is obtained by replacingliapesparameter with its MSILE.
The performance of the resulting estimator was meseto be superior than its
regular MLE[33].

The interval estimation for the stress-strengthiabdity (R) under the
exponentiated-scale family of distributions is deped in the Patil and Kulkarni
(2018)[34]. The exponentiated-scale family wasadtrced by Marshall and Olkin
(2007), which is also known as resilience or fraiharameter family. The
distributional form of resilience family is:

0 (o) =r(3)

a being a resilience parameter, while the distrimai form of frailty family is:

oe0) - ).

a being a fraiIEy parametef, the scale parameter, aRd.) is a known distribution
function whileF (.) is the corresponding survival function.

The stress—strength reliability = P (X; < X,) whereX; andX, represent
the stress applied and strength of an equipmespgentively, plays a crucial role in
setting warranty periods while launching new braoflsa product, among other
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applications. Patil and Kulkarni (2018) address i#seie of estimatin®® when X,
and X, belong to the exponentiated scale family, whichludes the popular
Exponentiated-exponential distribution (EED) thaishproven to be an excellent
model for lifetime distributions. The cases of kmdwnknown and equal/unequal
scale parameters are handled separately. For scaial parameters &f andX, the
expression foR turns out to be purely function of the shape patans. When the
scale parameters are unequal the reliablitgurns out to be a function of the
underlying shape parameter and ratio of the scalanpeters. For known scale
parameter, a generalized pivot quantity for thgpsh@arameter angl are developed.
The interval estimates oR based on the proposed generalized pivot quantity
exhibited uniformly best performance. For an unkn®egale parameter, a maximum
scale invariant likelihood estimator of the shapd an allied estimator of the scale
are introduced. An extensive simulation-based commpa is performed among
following five methods:

GPQ: Generalized pivotal quantity.

PBMSILE: A parametric bootstrap technique emplogadvSILE.
PBMLE: A Parametric bootstrap technique employed/Abrt.
NPBMSILE: A nonparametric bootstrap technique erypgtbon MSILE.
NPBMLE: A nonparametric bootstrap technique empdbge MLE.

The parametric bootstrap interval estimatesRdbased on the proposed maximum
scale invariant likelihood estimator of the shaparameter exhibited best

performance among others. An application in settuagranty periods is illustrated

based on two real data sets[35].

Micro-array experiments are important fields in ewllar biology where

zero values mixed with a continuous outcome amguizatly encountered leading to a
mixed distribution with a clump at zero. Comparisgnwo mixed populations, for
example of a control and a treated group; of twougs with different types of
cancer, to name a few, are often encountered igetlwontexts. Fairly skewed
distribution of the continuous part coupled withadinsample sizes are issues of main
concern to be attended for the quality of inferentesuch situations. However,
popularly used non-parametric methods rely on asytiap distribution of the
underlying test statistics which are valid only enthrge sample sizes. Kulkarni and
Patil (2018b) address the aforementioned issues viewly proposed exact test for
location-scale family distributions and GPQ basedametric test procedures for
non-location-scale distributions. The proposed pgetedure can be used under a
best fitted continuous distribution. It consistskefl parts, where k is the number of
parameters for a specific best fitting parametriodei used for the continuous
component. More specifically, the first part tegte equality of the proportions of
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zeros while the remaining k parts test the equalitthe k corresponding individual
parameters in the two populations under considerahlote that the combined test is
equivalent to testing equality of the two entire xed populations under
consideration. The k+1 parts and their combinaporduce an overall p-value for
testing the combined hypothesis of equality of twe distributions. In order to
account for the dependency among simultaneousgesfi a large number of tests,
we calibrate the observed p-values using the Beanjahlochberg (1995)
procedure[36].

A simulation study is carried out for validationdgperformance evaluation of
the proposed exact test for location-scale or tmgdion-scale family of distributions
and GPQ based test for non-location-scale distdhat The proposed test is
compared with the popular two-part (TP) test basethe type-I error and power of
the tests. The TP test consists of two parts onétissting equality of proportions of
zeros and other non-parametric test comparing twvdirmuous data sets. Different
tests are used to compare the continuous part,Ipdfoénogorov- Smirnov, t-test,
Wilcoxon rank sum test, Ansari Bradley test, Sigekey test[37].

Simulation based assessment of the proposed eesidbdsed on invariance
principle for location-scale family distributionsné GPQ based parametric test
procedures for non-location-scale distributionsveta their superior performance
with respect to size and power in comparison toaheve popular two-part tests,
more prominently for small sample sizes[38].

A number of distributions including the Exponentigktreme value, Normal,
Double exponential, Inverse Gaussian, Weibull, areog-Normal and Gamma
distributions have been handled to illustrate thmova testing procedure for
microarray data. We could identify 1555 differelyi@xpressed genes[39].

Future scope on RNA sequence count data analysigsgh the GPQ and GTV
for Poison and Negative binomial parameters isusised, and a generalized test
procedure is suggested for two discrete populaiiossnilar lines.

Patil and Kulkarni (2022) developed a unified agoto for testing homogeneity of
variances among k (k > 2) independent locationespapulations. The proposed test
is based on a generalized test variable. The GRVtdsting homogeneity of
variances is obtained by constructing GPQs forkthestinct scale parameters of the
k populations. The performance of the proposedisestsessed through an extensive
simulation study on popular location-scale familiascomparison to the existing
tests. The proposed test is uniformly superior @xsting popularly used parametric
and non-parametric tests in terms of typarbrs and power functiolA systematic
study to assess the impact of the extent of kwtasd skewness fisade through
simulation studies under the Generalized Normal &kw Normal distributions
respectively[40-41].
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A uniformly implementable small sample integratéelihood ratio test for one
way and two-way ANOVA under heteroscedasticity aodmality is developed by
Patil and Kulkarni (2021) which has an asymptotii-sguare distribution up to
second order accuracy. Simple ad hoc correctivesadents recommended for
improving the small sample distributional perforroamake the test usable even for
very small group sizes. Empirical assessment ofdbereveals that the test exhibits
uniformly well-concentrated sizes at the desiredelleand the maximal power,
particularly under very small size groups. In saniines, Patil and Kulkarni (2022)
develop a test for analysis of medians for BirnbaBaunders distributed response to
assess the impact of two interacting factors on rttezlian, where no any test
available in the literature.

Ma et. al. (2022) studied the statistical inferemee the location parameter
vector in the multivariate skew-normal model withknown scale parameter and
known shape parameter. Based on the distributicheofyeneralized HotellingB?
statistic, confidence regions and hypothesis testghe location parametgrare
obtained[42].

S.  RECOMMENDATIONS

The GPQ or Fiducial approach-based proceduresvariance-based procedures are
recommended as the best alternative to classicabopularly used inferential
procedures in the presence of nuisance parametdrsefeen work well even under
small sample sizes. A maximal scale invariant reriee for shape and allied
inference on scale parameter is a substitute fmsatal maximum likelihood point
and interval estimation as well as testing problemder shape-scale and
exponentiated-scale family of distributions. Gefieea variable approach and a
maximal scale invariant transformation-based infeeeis recommended for the
stress-strength reliability under exponentiatedestaamily of distributions. Exact test
based on fiducial inference is recommended for Gompn of two continuous
populations mixed with point mass at zero and b tiee homogeneity of variances
among several independent location-scale populatioWhen GPQ/invariance
principle-based procedures are not available, antomd¢jkelihood-based procedures,
the integrated likelihood principle works the best.

ACKNOWLEDGEMENT

Authors are very much thankful to associate eddod Reviewers for helpful
comments for possible publication of this article.

REFERENCES
1. Andrews, D. W. K., Ploberger, W. (1994) Economeityi62, 1383-1414.

Page 79



wn

10.
11.
12.

13.
14.
15.
16.
17.

18.
19.

20.
21.

22.

23.
24.

25.
26.
27.
28.

Barndorff-Nielsen, O. E. (1985), Ed. Lanke and G. Lindgren, 12, 25-38.
Barndorff-Nielsen, O. E. (1991) Likelihood theor$tatistical Theory and
Modelling, 96, 232-264.

Barndorff-Nielsen, O. E. (1994) Journal of Royaht&tical Sociaty, 56, 125—
140.

Benjamini, Y. and Hochberg, Y. (1995) Journal af fRoyal Statistical
Society, Series B, 57, 289-300.

Berger, J. O., Liseo, B., Wolpert, R. L. (1999) Statal Science, 14, 01—
28.

Berger, J. O. and Wolpert, R. L. (1988)stitute of Mathematical Statistics
Lecture Notes - Monograph Series, 19-64.

Cox, D. R. and Hinkley, D. V. (1974) Theoretical t&t#cs London:
Chapman and Hall.

Engelhardt, M. and Bain, L. J. (1977) Technometrigs/¥9-81.

Fraser, D. A. S. and Reid, N. (1989) Biometrilka &77—-488.

Gong, G. and Samaniego, F. J. (1981) Annals ofs8ta, 11, 68-77.
Hannig, J., lyer, H., and Patterson, P. (2006)rrduof the American
Statistical Association, 101, 245—-2609.

Hansen, B. E. (1996) Econometrica, 137, 3537-3547.

Jones, M. C. (2015) International Statistical Rexi83, 175-192.
Kalbfleish, J. D. Sprott, D. A. (1989) Journal ofoyrl Statistical
Society, 32,175-208.

Kulkarni, H. V., Patil, K. P. (2018) Journal of 8tdical Computation and
Simulation, 88, 2259-2272.

Kulkarni, H. V. and Patil, K. P. (2018) Mathematical Bieswes, 298, 19—
28.

Kulkarni, H. V., Powar, S. K. (2010) Lifetime datan@lysis, 16, 431-447.
Kulkarni, H. V., Powar, S. K. (2011) Journal of Pability and
Statistics,1-10.

Kulkarni, H. V., Sengupta A. (2028tatistica Sinica30, 1995-2021.
Kulkarni, H. V. and Sengupta A. (2021) Internatibn&tatistical
Review,90, 41-61.

Kulkarni, H. V., S. M. Patil. (2021) Advances ina8stical Analysis 105,
273-305.

Linnik, J. V. and Technica, S. (1968) American Mathéoal Soc.

Ma, Z., Chen, Y. J.,, Wang, T., & Liu, J. (2020) Commcations in
Statistics-Simulation and Computation, 1-17.

Marshall, A. W., Olkin, I. (2007) Springer Serias $tatistics.

Maswadah, M. (2013) Journal of Theoretical Statssti2, 115-136.
Maswadah, M. (2022) Journal of Applied Statisti®s 2825-2844.
Nkurnziza, S. and Chen, F. (2011). Sankhya B, 18;-240.

Page 80



29.

30.

31.

32.
33.

34.

35.

36.

37.
38.

39.
40.

41.
42.

Patil, K. P., Kulkarni, H. V. (2018) Quality and Rdility Engineering
International, 33, 1447-1453.

Patil, K. P., Kulkarni, H. V. (2022) Journal of 8ttical Computation and
Simulation, 00,01-27.

Patil, S. C., Kulkarni, H. V. (2011) Applied Matmatical Sciences, 5,
459-476.

Patil, S. M., H. V. Kulkarni. (2022) Journal of Aljpgd Statistics, 8, 1-22.
Powar, S. K., Kulkarni, H. V. (2015) Stochastic Eovimental Research
and Risk Assessment, 29, 1691-1708.

Rigby, R. A., & Stasinopoulos, D. M. (2005) Journaf the Royal
Statistical Society: Series C, 54, 507-554.

Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z.¢g Bastiani, F. (2019)
CRC press.

SenGupta, A., Kulkarni, H. V., Hubale, U. D. (20ZEnvironmental and
Ecological Statistics, 22, 87—104.

Severini, T. A. (1998) Biometrika, 85, 507-522.

Severini, T. A. (2000) Likelihood methods in statis, Oxford University
Press, New York.

Severini, T. A. (2010) Biometrika, 97, 481-496.

Tsui, K., Weerahandi, S. (1989) Journal of the Awgwri Statistical
Association, 84, 602—-607.

Weerahandi, S. (1995) Springer Series in Statistics

Zaigraev, A. Podraza-Karakulska, A. (2008}atistics and Probability
Letters, 78(3),28629.

Page 81



	Page 1
	Page 2
	Page 3
	Page 4

