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ABSTRACT 
A variety of parametric and non-parametric inferential procedures are available to 

study inference on the parameter of interest in the presence of nuisance parameters, 

but majority of these are constrained by certain limitations, as for example depicted 

through a variety of examples by Berger (1999). Also, small deviations from the 

underlying assumptions might often cause biased statistical inference, especially in 

small to moderate size samples.   Additionally, existence of the nuisance parameters 

also disturbs the statistical properties of the estimation procedures of the parameter 

of interest.  This motivates us to take brief review on improved or efficient and 

unified superior nuisance parameter-free (invariant) inferential procedures under 

shape-scale and location-scale family of distributions. 

KEYWORDS 
 Generalized variable approach, Maximal scale invariant Estimator, Integrated 

likelihood, Profile likelihood. 

………………………………………………………………………………............... 

1. INTRODUCTION 

Lifetime data are often well modelled by distributions belonging to shape-scale and 
location-scale families of distributions and are widely used in almost every discipline, 
see for example Kulkarni and Powar (2010, 2011), Patil and Kulkarni (2011), Jones 
(2015), Powar and Kulkarni (2015), Sengupta et. al. (2015), Rigby et. al. (2005, 2019) 
and Maswadah (2013, 2022).[1-3] The characteristics of a dataset can be measured 
through the measures of central tendency, dispersion, skewness, and kurtosis, which are 
usually well-defined functions of the shape, scale, and location parameters. In this 
context, we review some efficient or improved inferential procedures for shape-scale and 
location-scale families.[4] The widely applicable shape-scale families for monitoring 
lifetime data include the important skewed distributions like Gamma distribution, 
Weibull distribution, Generalized exponential distribution, Pareto distribution, Log-
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logistic, Log-normal distribution, Hyperbolic distribution, Exponentiated exponential, 
among others. The shape scale family of distributions is characterized by the probability 
density function (PDF) of the form: 

�������, 	
� = 1
� �� ��

� , 	� ,      �, 	, � > 0.  

where � and 	 are the scale and shape parameters respectively, ���. , 	
 being a function 
of only one parameter, namely the shape parameter 	. 

Distributions belonging to the location-scale family are used in hydrology, bio- 
statistics, various industrial and analytical fields, among others[5]. Normal, Logistic, 
Laplace, shifted exponential, Extreme value distribution are some popular members 
of the location-scale family, among others[6]. 

The PDF of a random variable Y from a location-scale family of distributions is 
characterized by density function of the form: 

�� �� − �
� � = 1

� �� �� − �
� � ,        �, � � ℛ, � > 0.   

where µ and σ are the location and scale parameters respectively, and ����
 is the 
probability density function of the standard random variable Z having location 
parameter zero and scale parameter one[7-8]. 

This article aims to review improved inferential procedures, including point 
estimation, interval estimation, and hypothesis testing, related to distributions be- 
longing to the location-scale and shape-scale families. Improved inference in the case of 
point estimation is often related to the reduction of bias and variability of the 
concerned estimator, while for the case of interval estimation and testing of the 
hypotheses it concerns the attainment of nominal level, increased coverage 
probability, and elevated powers, respectively[9-11].  

Though often nuisance parameters are absolutely essential for better modeling 
of the data, most often, existence of one or more nuisance parameters adversely 
impacts the performance of inference procedures for the parameters of interest. 
Existence of nuisance parameters may produce their adverse impact in a variety of 
ways, e.g., increased standard errors of point estimators, volumes/ lengths/ area of 
confidence region/intervals or rate of convergence of asymptotic properties of the 
parameters of interest among others[10]. A way-out is an attempt for reducing their 
impact using some well-known likelihood-based techniques, including conditional 
likelihood, integrated, profile or pseudo-likelihood function, and their modifications, 
or through the use of pivot or generalized pivot quantities with completely known 
probability distributions or circumventing the existence of nuisance parameters 
through the tricky use of invariance principle[11]. 
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Marginal and conditional likelihoods handle the problem by ignoring some of 
the data (marginalization) or by ignoring their variability (conditioning). When the 
number of nuisance parameters are large, then marginalization and conditioning are 
pretty complex, and sacrifice a sizeable information[12]. 

In this article, emphasis relies on the procedures eliminating of the impact of 
nuisance parameters through the invariance principle and generalized variable 
approach, which are expected to result in more efficient inference procedures by use 
of the entire data without losing any details [13]. 

The invariance principle is used to circumvent the effect of the nuisance 
parameters, making use of their property of being invariant under a group of 
transformations. The maximal scale invariant inference under a shape-scale family 
developed by Kulkarni and Patil (2018) turned out to be much efficient than classical 
procedures for the commonly encountered distributions enjoying the scale invariance 
property [14]. The generalized variable approach is another efficient tool for exact 
nuisance-parameters-free parametric inference in certain parametric families. The 
generalized variable approach is based on the generalized extreme region of a test, 
the generalization of a data-based extreme region of a test, which depends on the 
observed data and may involve all the parameters, where the associated p-value is 
independent of the nuisance parameters [15-16]. 

In this article, the improved inferences for the inferential problems including 
point estimation, one sample test and interval estimation for the parameter of interest 
under the shape-scale family of distributions, stress- strength reliability estimation 
for the exponentiated-scale family of distributions, test for two-sample comparison 
for two independent mixed continuous location- scale or some non-location-scale 
populations and test for homogeneity of variances among several location-scale 
populations are reviewed[17-19]. 

In more general set-up, some basic definitions in the generalized pivotal 
approach are given in the following subsection. 

2.  PRELIMINARIES 

2.1. The Generalized Variable Approach 

Tsui and Weerahandi (1989) introduced the concept of generalized p-values which is 
based on the generalized pivot quantity (GPQ) and generalized test variable 
(GTV)[20]. Let � be a random variable with cumulative distribution function (CDF)  
���. 
, where � = � , !
 is an unknown parameter vector and ���. 
 is a member of 
the shape-scale or location-scale family of distributions. Suppose the interest lies in 
the parameter   while ! is the nuisance parameter. A GPQ for  , GTV and 
generalized p-value (GPV) for testing a one-sided hypothesis "#:   ≤   # verses 
"�:   >   # is defined below: 
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Definition 1: Generalized pivot quantity (GPQ) 

The GPQ & =  '��;  ), �
 for θ is a random quantity that satisfies following two 
conditions: 

i. The distribution of &  for given � =  ) is free from any unknown 
parameters. 

ii.  The value of & =  '��;  ), �
  at � =  ) does not depend on any 
unknown parameter, other than  . For most of the cases, &  =    at 
� =  ). 

The following invariance property of GPQs is an easy consequence of its definition: 

Preposition 1: Invariance property of GPQ 

If &  is a GPQ for θ, then for any function *, *�& 
 is GPQ for *� 
. 
Definition 2: Generalized test variable (GTV) 

A random quantity +  =  , ��;  ), �
 is said to be GTV for the parameter of interest 
θ if it satisfies following three properties: 

i. The probability distribution of +  is free from any unknown parameters. 

ii.  The value of +  =  , ��;  ), �
  at X = x does not depend on any 
unknown parameter, other than θ. 

iii.  For fixed x, the probability - �, ��;  ), �
    ≥  /| 
, for all t ≥ 0 is non- 
decreasing in θ. 

Preposition 2 : Connection between GPQ and GTV 

If &  is a GPQ for θ, then +  = &  − θ is a GTV for θ (Weerahandi (1995)). 

Definition 3 : Generalized p-value (GPV) 

Based on the GTV defined in Definition 2 and Preposition 2, the generalized 

p-value for testing "# mentioned above is defined by 

1 = 231  4 56-�, ��;  ),  , 7
 ≥ /
,   were,  / = , �);  ),  , 7
 

1 = -�, ��;  ),  8, 7
 ≥ /
, on account of property iii of Definition 2. 

2.2. The Invariance Principle 

If X is a random variable having density function ��),  
,  �9 and & be a group of 
transformation on the space of values of X then: 

i. : is invariant under & if :���)
� = :�)
 for all ) and all ��&. 
ii.  ,�)
 is maximal invariant under & if ,�);
 = ,�)<
 ⟹ ); = ��)<
 for 
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some ��&. 
Where ) is observed value of X. 

2.2.1 Location Invariant 

Let � = ���, ��, … , �?
, be the random sample from location family with location 
parameter � and & be the group transformation then  

���
 = ��� + �, �� + �, … . , �? + �
 ,    −∞ < � < ∞, then 

,��
 = ,����
� = ��? − ��, … , �? − �?C�
. 
is called as maximal location invariant estimator.  

2.2.2 Scale Invariant 

Let � = ���, ��, … , �?
, be the random sample from scale family with scale 
parameter � and & be the group transformation then  
���
 = ����, ���, … . , ��?
 ,    −∞ < � < ∞, then 

,��
 = ,����
� = ��?
��

, ��
��

, … , �?C�
�?


. 

,��
 is maximal scale invariant estimator. 

2.2.3 Location-Scale Invariant 

Let � = ���, ��, … , �?
, be the random sample from location-scale family 
with location parameter � and scale parameter �. Let & be the group 
transformation then  
���
 = ����� + �
, ���� + �
, … . , ���? + �

 ,    −∞ < � < ∞, then 

,��
 = ,����
� = ��? − �?C�
�� − ��

, �?C� − �?C�
�D − ��

, … , �� − ��
�? − �?C�

, �� − �?
�? − ��


. 

,��
 is maximal location-scale invariant estimator.  

The next section reviews the literature related to the treatment for nuisance 
parameters.  

3. LITERATURE REVIEW 

There have been numerous articles addressing a systematic study of a variety of 
methods for eliminating nuisance parameters. 

3.1. Likelihood Based Approach 

A pseudo-likelihood or profile likelihood is obtained by replacing the nuisance 
parameters with their maximum likelihood estimators obtained by keeping the 
parameters of interest fixed. After fixing the interest parameters, the MLEs of 
nuisance parameters are expressed as functions of interest parameters and after 
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replacing the nuisance parameters by these functions, the likelihood gets translated to 
a function of only interest parameters.   This likelihood behaves similar to the 
classical likelihood. For the critical review and various aspects of pseudo or profile 
likelihood, we refer to Kalbfleish and Sprott (1989)[21], Gong and Samaniego 
(1981)[22], Fraser and Reid (1989)[23], Barndorff-Nielsen (1985)[24], Barndorff-
Nielsen (1991)[25], Barndorff-Nielsen (1994)[26] and Severini (1998)[27]. 

Integrated likelihood approach is another way to eliminate nuisance parameters, 
For notable analytical results in this context we refer to Berger and Wolpert (1988), 
Berger et al. (1999), Severini (2000), and Severini (2010), among others. Notable 
novel recent inferential procedures based on integrated likelihood have been 
developed by SenGupta and Kulkarni (2018), Kulkarni and SenGupta (2021), Patil 
and Kulkarni (2022), and Kulkarni and Patil (2021) under directional and linear 
data[23-27]. 

3.2. Invariance Principle Approach: 

Nuisance parameters free inference can also be based on an ancillary statistic, 
invariant or weighted average power criterion, and conditional probability as 
reported in Linnik and Technica (1968), Cox and Hinkley (1974), Engelhardt and 
Bain (1977), Andrews and Ploberger (1994), and Hansen (1996)[28]. 

Invariance principle can be coupled with appropriate data transformation to 
yield nuisance parameters free transformed likelihood that is purely function of the 
parameters of interest and the observed sample only. Zaigraev and Podraza- 
Karakulska (2008) addressed the maximal scale invariant estimation procedure for 
the shape parameter of gamma distribution. Kulkarni and Patil (2018a) derived 
maximal scale invariant inference for the shape parameter under shape-scale family 
of distributions[29]. 

Tsui and Weerahandi (1989) developed the concept of generalized test variable 
(GTV) and generalized p-value (GPV) for significance testing based on a suitable 
generalized extreme region where the p-value is independent of the nuisance 
parameters[30]. Exact statistical inference based on GTV, GPV, and generalized 
confidence interval (GCI) can be found in Weerahandi (1995). Hannig et al. (2006) 
identified an important subclass of generalized pivotal quantities (GPQ) which have 
asymptomatically correct frequentist coverage. Nkurnziza and Chen (2011) provide a 
systematic approach to construct GPQ, GCI, and GPV for a location-scale family of 
distributions[30]. 

The present work reviews univariate, two-sample, and multi-sample improved 
procedures that efficiently handle the nuisance parameters and the recommended 
procedures are given in the next section.  

4. IMPROVED INFERENTIAL PROCEDURES 
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Kulkarni and Patil (2018a)[31] introduced the maximal scale-invariant estimation 
procedure for the shape parameter of the shape-scale family of distributions. The 
method for obtaining nuisance parameters-free likelihood for the shape parameter 
based on maximal scale-invariant transformation for eliminating the nuisance scale 
parameter is explained. The resulting likelihoods are functions of only the shape 
parameter of interest. The results are illustrated for popular shape-scale distributions, 
namely the Weibull, the Gamma and the Generalized exponential (GE) distribution 
under complete and type-II censored samples. The proposed maximal scale-invariant 
likelihood estimator (MSILE) for the shape parameter of interest, being based on a 
proper likelihood function enjoys all asymptotic properties under regular 
conditions[31]. 

A simulation study for the Weibull and Gamma distributions revealed an almost 
exact relationship between the bias of the MSILE and the maximum likelihood 
estimator (MLE). An improved, almost unbiased estimator (AUE) is proposed by 
exploiting this linearity. The extent of reduction in bias and mean square error (MSE) 
of the MLE, MSILE and AUE reveals the superiority of MSILE over MLE, and the 
superiority of AUE over MSILE and MLE for Weibull and Gamma distribution[32]. 
One-sample test and 100�1 −  E
% confidence interval for the shape parameter is 
developed, and performance is assessed with respect to the observed size of relevant 
test procedures, and coverage probability and average width of the associated 
confidence interval. Furthermore, the MLE of the scale parameter being a function of 
the shape parameter, is obtained by replacing the shape parameter with its MSILE. 
The performance of the resulting estimator was observed to be superior than its 
regular MLE[33].  

The interval estimation for the stress-strength reliability (R) under the 
exponentiated-scale family of distributions is developed in the Patil and Kulkarni 
(2018)[34]. The exponentiated-scale family was introduced by Marshall and Olkin 
(2007), which is also known as resilience or frailty parameter family. The 
distributional form of resilience family is: 

& �G
H , E� = �I �G

H�, 

E being a resilience parameter, while the distributional form of frailty family is: 

&̅ �G
H , E� = �KI �G

H�, 

E being a frailty parameter, L the scale parameter, and � �. 
 is a known distribution 
function while �K �. 
 is the corresponding survival function. 

The stress–strength reliability M =  - �N�  <  N�
 where N� and N� represent 
the stress applied and strength of an equipment, respectively, plays a crucial role in 
setting warranty periods while launching new brands of a product, among other 
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applications. Patil and Kulkarni (2018) address the issue of estimating M when N� 
and N� belong to the exponentiated scale family, which includes the popular 
Exponentiated-exponential distribution (EED) that has proven to be an excellent 
model for lifetime distributions. The cases of known/unknown and equal/unequal 
scale parameters are handled separately. For equal scale parameters of N� and N� the 
expression for M turns out to be purely function of the shape parameters. When the 
scale parameters are unequal the reliability M turns out to be a function of the 
underlying shape parameter and ratio of the scale parameters. For known scale 
parameter, a generalized pivot quantity for the shape parameter and M are developed. 
The interval estimates of M based on the proposed generalized pivot quantity 
exhibited uniformly best performance. For an unknown scale parameter, a maximum 
scale invariant likelihood estimator of the shape and an allied estimator of the scale 
are introduced. An extensive simulation-based comparison is performed among 
following five methods: 

GPQ: Generalized pivotal quantity. 

PBMSILE: A parametric bootstrap technique employed on MSILE. 

PBMLE: A Parametric bootstrap technique employed on MLE.  

NPBMSILE: A nonparametric bootstrap technique employed on MSILE.  

NPBMLE: A nonparametric bootstrap technique employed on MLE. 

The parametric bootstrap interval estimates of M based on the proposed maximum 
scale invariant likelihood estimator of the shape parameter exhibited best 
performance among others. An application in setting warranty periods is illustrated 
based on two real data sets[35].  

Micro-array experiments are important fields in molecular biology where 
zero values mixed with a continuous outcome are frequently encountered leading to a 
mixed distribution with a clump at zero. Comparison of two mixed populations, for 
example of a control and a treated group; of two groups with different types of 
cancer, to name a few, are often encountered in these contexts. Fairly skewed 
distribution of the continuous part coupled with small sample sizes are issues of main 
concern to be attended for the quality of inference in such situations. However, 
popularly used non-parametric methods rely on asymptotic distribution of the 
underlying test statistics which are valid only under large sample sizes. Kulkarni and 
Patil (2018b) address the aforementioned issues via a newly proposed exact test for 
location-scale family distributions and GPQ based parametric test procedures for 
non-location-scale distributions. The proposed test procedure can be used under a 
best fitted continuous distribution. It consists of k+1 parts, where k is the number of 
parameters for a specific best fitting parametric model used for the continuous 
component. More specifically, the first part tests the equality of the proportions of 
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zeros while the remaining k parts test the equality of the k corresponding individual 
parameters in the two populations under consideration. Note that the combined test is 
equivalent to testing equality of the two entire mixed populations under 
consideration. The k+1 parts and their combination produce an overall p-value for 
testing the combined hypothesis of equality of the two distributions. In order to 
account for the dependency among simultaneous testing of a large number of tests, 
we calibrate the observed p-values using the Benjamini–Hochberg (1995) 
procedure[36]. 

A simulation study is carried out for validation and performance evaluation of 
the proposed exact test for location-scale or log-location-scale family of distributions 
and GPQ based test for non-location-scale distributions. The proposed test is 
compared with the popular two-part (TP) test based on the type-I error and power of 
the tests. The TP test consists of two parts one is of testing equality of proportions of 
zeros and other non-parametric test comparing two continuous data sets. Different 
tests are used to compare the continuous part, namely Kolmogorov- Smirnov, t-test, 
Wilcoxon rank sum test, Ansari Bradley test, Sigel-Tukey test[37]. 

Simulation based assessment of the proposed exact test based on invariance 
principle for location-scale family distributions and GPQ based parametric test 
procedures for non-location-scale distributions showed their superior performance 
with respect to size and power in comparison to the above popular two-part tests, 
more prominently for small sample sizes[38]. 

A number of distributions including the Exponential, Extreme value, Normal, 
Double exponential, Inverse Gaussian, Weibull, Pareto, Log-Normal and Gamma 
distributions have been handled to illustrate the above testing procedure for 
microarray data. We could identify 1555 differentially expressed genes[39]. 

Future scope on RNA sequence count data analysis through the GPQ and GTV 
for Poison and Negative binomial parameters is discussed, and a generalized test 
procedure is suggested for two discrete populations in similar lines.  

Patil and Kulkarni (2022) developed a unified approach for testing homogeneity of 
variances among k (k > 2) independent location-scale populations. The proposed test 
is based on a generalized test variable. The GPV for testing homogeneity of 
variances is obtained by constructing GPQs for the k distinct scale parameters of the 
k populations. The performance of the proposed test is assessed through an extensive 
simulation study on popular location-scale families in comparison to the existing 
tests. The proposed test is uniformly superior over existing popularly used parametric 
and non-parametric tests in terms of type-I errors and power function. A systematic 
study to assess the impact of the extent of kurtosis and skewness is made through 
simulation studies under the Generalized Normal and Skew Normal distributions 
respectively[40-41].  
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A uniformly implementable small sample integrated likelihood ratio test for one 
way and two-way ANOVA under heteroscedasticity and normality is developed by 
Patil and Kulkarni (2021) which has an asymptotic chi-square distribution up to 
second order accuracy. Simple ad hoc corrective adjustments recommended for 
improving the small sample distributional performance make the test usable even for 
very small group sizes. Empirical assessment of the test reveals that the test exhibits 
uniformly well-concentrated sizes at the desired level and the maximal power, 
particularly under very small size groups. In similar lines, Patil and Kulkarni (2022) 
develop a test for analysis of medians for Birnbaum–Saunders distributed response to 
assess the impact of two interacting factors on the median, where no any test 
available in the literature.  

Ma et. al. (2022) studied the statistical inference on the location parameter 
vector in the multivariate skew-normal model with unknown scale parameter and 
known shape parameter. Based on the distribution of the generalized Hotelling’s ,� 
statistic, confidence regions and hypothesis tests on the location parameter � are 
obtained[42].  

5. RECOMMENDATIONS  

The GPQ or Fiducial approach-based procedures or invariance-based procedures are 
recommended as the best alternative to classical or popularly used inferential 
procedures in the presence of nuisance parameters and often work well even under 
small sample sizes.  A maximal scale invariant inference for shape and allied 
inference on scale parameter is a substitute for classical maximum likelihood point 
and interval estimation as well as testing problem under shape-scale and 
exponentiated-scale family of distributions. Generalized variable approach and a 
maximal scale invariant transformation-based inference is recommended for the 
stress-strength reliability under exponentiated-scale family of distributions. Exact test 
based on fiducial inference is recommended for Comparison of two continuous 
populations mixed with point mass at zero and to test the homogeneity of variances 
among several independent location-scale populations. When GPQ/invariance 
principle-based procedures are not available, among the likelihood-based procedures, 
the integrated likelihood principle works the best. 
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